1 Covariance

1.1 Concepts

1. The Covariance is defined as $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]$. It measures how "independent" two random variables are. For independent random variables, we have $\operatorname{Cov}(X, Y)=0$. Note that we can recover the definition of regular variance because the covariance of a random variable with itself is $\operatorname{Cov}(X, X)=E\left[X^{2}\right]-E[X]^{2}=\operatorname{Var}(X)$. We can update the formula for the variance of the sum of two random variables as $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)$ which holds for all random variables. Properties that hold for the random variable are:

- $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$
- $\operatorname{Cov}(X, Y+Z)=\operatorname{Cov}(X, Y)+\operatorname{Cov}(X, Z)$
- $\operatorname{Cov}(X, c Y)=c \operatorname{Cov}(X, Y)$ for any constant c
- $\operatorname{Cov}(X, c)=0$ for any constant c

1.2 Example

2. If $\operatorname{Var}(X)=1$ and $\operatorname{Cov}(X, Y)=0$, what is $\operatorname{Cov}(X, X+Y)$?

Solution: Following the formula, we have that

$$
\begin{gathered}
\operatorname{Cov}(X, X+Y)=E[X(X+Y)]-E[X] E[X+Y]=E\left[X^{2}\right]+E[X Y]-E[X](E[X]+E[Y]) \\
\quad=E\left[X^{2}\right]-E[X]^{2}+E[X Y]-E[X] E[Y]=\operatorname{Var}(X)+\operatorname{Cov}(X, Y)=1+0=1 .
\end{gathered}
$$

1.3 Problems

3. True FALSE The covariance of two random variables is always ≥ 0.

Solution: The covariance of X with $-X$ is $\operatorname{Cov}(X,-X)=E\left[-X^{2}\right]-E[X] E[-X]=$ $-\operatorname{Var}(X) \leq 0$.
4. TRUE False For random variables X, Y and constants c, d, we have $\operatorname{Cov}(X+c, Y+$ $d)=\operatorname{Cov}(X, Y)$.

Solution: We can compute this out by plugging in $\operatorname{Cov}(X+c, Y+d)=E[(X+$ c) $(Y+d)]-E[X+c] E[Y+d]$ and using the fact that the expected value of a constant is the constant itself $(E[c]=c)$ to simplify and get $E[X Y]-E[X] E[Y]=\operatorname{Cov}(X, Y)$.
5. If $\operatorname{Var}(X)=4$ and $\operatorname{Var}(Y)=1$ and $\operatorname{Cov}(X, Y)=-2$, what is $\operatorname{Var}(X+2 Y)$?

Solution: Computing and plugging $X+2 Y$ into the formula for variance, we get that

$$
\begin{gathered}
\operatorname{Var}(X+2 Y)=E\left[(X+2 Y)^{2}\right]-E[X+2 Y]^{2}=E\left[X^{2}+4 X Y+4 Y^{2}\right]-\left(E[X]^{2}+4 E[X] E[Y]+4 E[Y]^{2}\right) \\
=E\left[X^{2}\right]-E[X]^{2}+4 E[X Y]-4 E[X] E[Y]+4 E\left[Y^{2}\right]-4 E[Y]^{2} \\
=\operatorname{Var}(X)+4 \operatorname{Cov}(X, Y)+4 \operatorname{Var}(Y)=4-8+4=0
\end{gathered}
$$

Another way to do this is use the formula above to get

$$
\operatorname{Var}(X+2 Y)=\operatorname{Var}(X)+\operatorname{Var}(2 Y)+2 \operatorname{Cov}(X, 2 Y)=\operatorname{Var}(X)+4 \operatorname{Var}(Y)+4 \operatorname{Cov}(X, Y)=0
$$

1.4 Extra Problems

6. If $\operatorname{Var}(X)=1$ and $\operatorname{Var}(Y)=1$ and $\operatorname{Cov}(X, Y)=3$, what is $\operatorname{Var}(2 X+Y)$?

Solution: Use the formula above to get
$\operatorname{Var}(2 X+Y)=\operatorname{Var}(2 X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(2 X, Y)=4 \operatorname{Var}(X)+\operatorname{Var}(Y)+4 \operatorname{Cov}(X, Y)=17$.

2 Z-Scores, CLT, LoLN

2.1 Concepts

7. In order to compute the probability $P(a \leq X \leq b)$ for a normal distribution, we need to take an integral $\int_{a}^{b} \frac{1}{\sqrt{2 \pi \sigma}} e^{-(x-\mu)^{2} / \sigma^{2}}$ and this integral is almost impossible to do without a calculator. So, what we do is have a table of values for this integral and look up the value that we need. Given a z score such as 1.5 , when we look it up in the table,
$z(1.5)=P(0 \leq Z \leq 1.5)$, where Z is the standard normal distribution; the bell curve with mean $\mu=0$ and standard deviation $\sigma=1$.

One key area these pop up in is when taking the average of a bunch of trials. The Central Limit Theorem (CLT) tells us that for X_{i} independent and identically distributed (i.i.d.) (e.g. rolling a die multiple times) with $E\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$, then the average that we get (e.g. the average number that we roll) is approximately normal distributed with mean μ and standard deviation σ / \sqrt{n}. So

$$
\bar{X}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}
$$

is approximately normally distributed with $E[\bar{X}]=\mu$ and $\operatorname{Var}(\bar{X})=\sigma^{2} / n$.
In order to compute probabilities, we compute the z score. Given a normal distribution with mean μ and standard deviation σ, the z score of a value a is $\frac{|a-\mu|}{\sigma}$. Then we look up this value in a table.

The Law of Large Numbers is a weaker statement that just says that as we take averages and let $n \rightarrow \infty$, then the sample mean becomes closer and closer to the actual mean μ. Namely, $E[\bar{X}] \rightarrow \mu$ and the probability that we are far away from the mean goes to 0 .

2.2 Examples

8. Let f be normally distributed with mean -2 and standard deviation 4. Calculate the probability $P(-1 \leq X \leq 1)$.

Solution: We have $P(-1 \leq X \leq 1)=P(-2 \leq X \leq 1)-P(-2 \leq X \leq-1)$ and we calculate the z scores. The first is $\frac{|1-(-2)|}{4}=\frac{3}{4}$ and the second is $\frac{|-1-(-2)|}{4}=\frac{1}{4}$. Thus, the probability is $z(0.75)-z(0.25)$.
9. Suppose that the height of women is distributed with an average height of 63 inches and a standard deviation of 10 inches. Taking a sample of 100 women, what is the probability that the average of the heights of these 100 women is between 62 and 64 inches?

Solution: The average height of 100 women will be approximately normally distributed with average 63 and standard deviation $10 / \sqrt{100}=1$. Therefore, $P(62 \leq$ $\bar{X} \leq 64)=P(62 \leq \bar{X} \leq 63)+P(63 \leq \bar{X} \leq 64)=z(1)+z(1)=2 z(1)$.

2.3 Problems

10. TRUE False We can only use the z score to calculate probabilities of normal distributions (bell curves).

Solution: The table only applies for probability of normal distributions.
11. True FALSE The normal distribution with positive mean can only take on positive values. $(P(X \leq 0)=0)$

Solution: The normal distribution can take on any real value.
12. Let f be normally distributed with mean 1 and standard deviation 4. Calculate the probability $P(X \geq 3)$.

Solution: In order to calculate this probability, we need the probability area to touch the median so we have $P(X \geq 3)=P(X \geq 1)-P(1 \leq X \leq 3)$. The first probability is $\frac{1}{2}$ and the second has the z score $\frac{|3-1|}{4}=\frac{1}{2}$. So the answer is $0.5-z(0.5)$.
13. Let f be normally distributed with mean -2 and standard deviation 4 . Calculate the probability $P(-3 \leq X \leq 1)$.

Solution: We have $P(-3 \leq X \leq 1)=P(-3 \leq X \leq-2)+P(-2 \leq X \leq 1)$ and we calculate the z scores. The first is $\frac{|-3-(-2)|}{4}=\frac{1}{4}$ and the second is $\frac{|1-(-2)|}{4}=\frac{3}{4}$. Thus, the probability is $z(0.25)+z(0.75)$.
14. Let f be normally distributed with mean 5 and standard deviation 2. Calculate the probability $P(X \leq 3)$.

Solution: We have $P(X \leq 3)=P(X \leq 5)-P(3 \leq X \leq 5)$ and we calculate the z scores. The first is just $\frac{1}{2}$ and the second is $\frac{|3-5|}{2}=1$. Thus, the probability is $0.5-z(1)$.
15. Let f be normally distributed with mean 0 and standard deviation 5. Calculate the probability $P(-2 \leq X \leq-1)$.

Solution: We have $P(-2 \leq X \leq-1)=P(-2 \leq X \leq 0)-P(-1 \leq X \leq 0)$ and we calculate the z scores. The first is $\frac{|-2-0|}{5}=\frac{2}{5}$ and the second is $\frac{|-1-0|}{5}=\frac{1}{5}$. Thus, the probability is $z(2 / 5)-z(1 / 5)$.
16. Suppose the weight of newborns is distributed with an average weight of 8 ounces and a standard deviation of 1 ounce. Today, there were 25 babies born at the Berkeley hospital. What is the probability that the average weight of these newborns is less than 7.5 ounces?

Solution: The average weight of these babies will be approximately normally distributed with mean 8 and standard deviation $1 / \sqrt{25}=0.2$. The probability is $P(\bar{X} \leq 7.5)=0.5-P(7.5 \leq \bar{X} \leq 8)=0.5-z(2.5)$.
17. Suppose that the average lifespan of a human is 75 years with a standard deviation of 10 years. What is the probability that in a class of 25 students, they will on average live longer than 80 years?

Solution: The average lifespan of 25 students is approximately normally distributed with mean 75 and standard deviation $10 / \sqrt{25}=2$. Thus $P(\bar{X} \geq 80)=0.5-z(\mid 80-$ $75 \mid / 2)=0.5-z(2.5)$.

2.4 Extra Problems

18. Let f be normally distributed with mean 3 and standard deviation 5. Calculate the probability $P(X \geq 0)$.

Solution: We have $P(X \geq 0)=P(0 \leq X \leq 3)+P(3 \leq X)$ and we calculate the z scores. The second is just $\frac{1}{2}$ and the first is $\frac{|0-3|}{5}=0.6$. Thus, the probability is $0.5+z(0.6)$.
19. Let f be normally distributed with mean 2 and standard deviation 1 . Calculate the probability $P(X \leq 0)$.

Solution: We have $P(X \leq 0)=P(X \leq 2)-P(0 \leq X \leq 2)$ and we calculate the z scores. The first is just $\frac{1}{2}$ and the second is $\frac{|0-2|}{1}=2$. Thus, the probability is $0.5-z(2)$.
20. The newest Berkeley quarterback throws an average of 0.9 TDs/game with a standard deviation of 1 . What is the probability that he averages at least $1 \mathrm{TD} /$ game next season (16 total games)?

Solution: In 16 games, he will average 0.9 TDs/game with a standard deviation of $1 / \sqrt{16}=0.25$. So the probability that he averages at least $1 \mathrm{TD} /$ game is $P(\bar{X} \geq$ $1)=0.5-P(0.9 \leq \bar{X} \leq 1)=0.5-z\left(\frac{|1-0.9|}{0.25}\right)=0.5-z(0.4)$.
21. Suppose that the average shopper spends 100 dollars during Black Friday, with a standard deviation of 50 dollars. What is the approximate probability that a random sample of 25 shoppers will have spent more than $\$ 3000$?

Solution: In a sample of 25 shoppers, the average shopper will spend 100 dollars with a standard deviation of $50 / \sqrt{25}=10$. Thus, the probability that a random sample will spend more than 3000 dollars is the probability that a random sample will average more than $3000 / 25=120$ dollars per person. This probability is $0.5-$ $z(|120-100| / 10)=0.5-z(2)$.
22. Suppose that on the most recent midterm, the average was 60 and the standard deviation 20. What is the approximate probability that a class of 25 had an average score of at least 66?

Solution: In a class of 25 , the average score will be distributed with mean 60 and standard deviation $20 / \sqrt{25}=4$. The probability that they had an average score of at least 66 is $0.5-z(|66-60| / 4)=0.5-z(1.5)$.

